✓ Congratulations! You passed!

TO PASS 80% or higher

GRADE 100%

Natural Language Processing & Word Embeddings

LATEST SUBMISSION GRAD	E
------------------------	---

100%

1.	Suppose you learn a word embedding for a vocabulary of 10000 words. Then the embedding vectors should be 10000
	dimensional, so as to capture the full range of variation and meaning in those words.

1/1 point

○ True

False

The dimension of word vectors is usually smaller than the size of the vocabulary. Most common sizes for word vectors ranges between 50 and 400.

2	What	ic	t_SN	JE2

1 / 1 point

- A linear transformation that allows us to solve analogies on word vectors
- A non-linear dimensionality reduction technique
- A supervised learning algorithm for learning word embeddings
- An open-source sequence modeling library

Yes

3. Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You then use this 1/1 point word embedding to train an RNN for a language task of recognizing if someone is happy from a short snippet of text, using a small training set.

x (input text)	y (happy?)
I'm feeling wonderful today!	1
I'm bummed my cat is ill.	0
Really enjoying this!	1

Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label y=1.

True

O False

 $Yes, word \ vectors \ empower \ your \ model \ with \ an \ incredible \ ability \ to \ generalize. \ The \ vector \ for \ "ecstatic \ would$ contain a positive/happy connotation which will probably make your model classified the sentence as a "1".

4. Which of these equations do you think should hold for a good word embedding? (Check all that apply)

1/1 point

 $lap{ } e_{boy} - e_{girl} pprox e_{brother} - e_{sister}$

✓ Correct

 $e_{boy} - e_{girl} \approx e_{sister} - e_{brother}$

Yes!

 \Box $e_{boy} - e_{brother} \approx e_{sister} - e_{girl}$

- 5. Let E be an embedding matrix, and let o_{1234} be a one-hot vector corresponding to word 1234. Then to get the embedding 1/1 point of word 1234, why don't we call $E * o_{1234}$ in Python?
 - It is computationally wasteful.
 - \bigcirc The correct formula is $E^T * o_{1224}$.

	This doesn't handle unknown words (<unk>).</unk>
	None of the above: calling the Python snippet as described above is fine.
	✓ Correct Yes, the element-wise multiplication will be extremely inefficient.
6.	When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.
	True
	○ False
	✓ Correct
7.	In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer.
	$\bigcirc \ c$ is the sequence of all the words in the sentence before $t.$
	\bigcirc c is the one word that comes immediately before t .
	c is a sequence of several words immediately before t. © c and t are chosen to be nearby words.
	G canada a canada no canada y mona.
	✓ Correct
8	Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec model 1/1 point
0.	uses the following softmax function:
	$P(t \mid c) = rac{e^{ heta_t^2 \epsilon_c}}{\sum_{t'=1}^{1000} e^{ heta_t^2 \epsilon_c}}$
	Which of these statements are correct? Check all that apply.
	$m{arphi}_t$ and e_c are both 500 dimensional vectors.
	✓ Correct
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	$lacksquare$ $ heta_t$ and e_c are both trained with an optimization algorithm such as Adam or gradient descent.
	✓ Correct
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
9.	Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model
	minimizes this objective: $\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i + b_j' - log X_{ij})^2$
	Which of these statements are correct? Check all that apply.
	$igsqcup heta_i$ and e_j should be initialized to 0 at the beginning of training,
	$lacksquare$ $ heta_i$ and e_j should be initialized randomly at the beginning of training.
	✓ Correct
	$igspace{\begin{tabular}{cccccccccccccccccccccccccccccccccccc$
	Correct
	The weighting function $f(.)$ must satisfy $f(0) = 0$.
	Correct The weighting function helps prevent learning only from extremely common word pairs. It is not necessary that it satisfies this function.
10	You have trained word embeddings using a text dataset of m_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of m_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstance would you expect the word embeddings to be helpful?

 $m_1 >> m_2$

 $\bigcirc \ m_1 << m_2$

✓ Correct